OPERA IPOGEA

Storia Cultura Civiltà Ambiente

1/2007

erta degli antichi acquedotti italiani

Acquedotto antico: configurazione strutturale dell'opera idraulica

Carla Galeazzi, Carlo Germani Società Speleologica Italiana - Commissione Cavità Artificiali; Centro Ricerche Sotterranee "Egeria" carla.galeazzi@egeriasotterranea.it

Abstract:

Some considerations on the archaeology of water are presented in this article, within the framework of the project by the Italian Speleological Society (SSI) dedicated to study and analysis of the ancient subterranean aqueducts in Italy. Draining waters, collecting and transporting them to the sites where settlements were established have always been among the most important actions performed by man throughout the history, and in several cases the availability of water has strongly controlled the foundation of a town at a certain site, and its following development. To illustrate the complex and fascinating works carried out in ancient times to provide with water resources the human settlements, the hydraulic techniques in the ancient world are dealt with. In particular, the roman aqueducts are treated, together with some indications regarding the working technique used by Romans, and a description of the main elements and features of ancient, as well as modern, aqueducts.

Key words: aqueducts, water resource, history, hydraulic works **Parole chiave**: acquedotto sotterraneo, risorse idriche, storia, costruzioni idriche

Il censimento degli antichi acquedotti è un progetto della Commissione Cavità Artificiali sostenuto con convincimento da Vittorio Castellani. Questo testo di carattere generale è tratto in larga parte da suoi articoli ed a lui è dedicata la pubblicazione di questo primo contributo.

Premessa

Gli speleologi italiani negli ultimi trent'anni si sono occupati frequentemente dello studio e della catalogazione delle opere ipogee di interesse storico, soffermandosi in modo particolare sulle trasformazioni subite dal territorio a seguito di interventi antropici.

Gli aborigeni australiani, ad un livello di sviluppo paragonabile al paleolitico europeo, già scavavano profonde gallerie per la ricerca di acqua e miniere per l'estrazione della selce. Con tecniche e finalità differenti tali attività si sono protratte per tutto il corso della storia dell'uomo, fino ai nostri giorni.

Sarebbe dunque impresa ardua indagare sull'origine dello "scavare" il sottosuolo, mentre vale la pena di porre attenzione a quelle manifestazioni che, marcando il progresso delle innovazioni tecnologiche, ci portano testimonianze dello sviluppo del "costruire" nel sottosuolo.

L'utilizzo delle tecniche di progressione speleologica a supporto degli studi che si andavano intraprendendo è stata determinante per conoscere opere che rischiavano l'oblio, consentendo nel contempo alla Commissione Cavità Artificiali della Società Speleologica Italiana (SSI) di acquisire una vasta messe di documentazione

che, anche attraverso questa pubblicazione, ci accingiamo a rendere fruibile.

Oggi possiamo affermare di riuscire a comprendere sempre più chiaramente quanto siamo debitori verso chi, in epoche remote o remotissime, con uno sforzo che a noi appare ancora straordinario, ha modellato il territorio a misura d'uomo, regolandone la distribuzione delle acque perché su di esso potesse fiorire, assieme alle messi, la civiltà dell'uomo.

Dionigi di Alicarnasso, nelle sue "Antichità Romane", scriveva: "Mi sembra che la grandezza dell'Impero Romano appaia magnificentissima soprattutto da tre cose: gli acquedotti, le strade, le cloache" (Ant. Rom.III, 15). Giudizio condiviso da Strabone, al quale anni dopo Frontino aggiunse: "A tali opere, utili per così ingenti

Figura 1: le splendide arcate degli acquedotti di Roma, realizzate allo scopo di mantenere la pendenza necessaria per raggiungere la città, sono ancora oggi un elemento dominante del paesaggio della Campagna Romana (foto C. Galeazzi).

quantità di acque, chi vorrebbe confrontare le superflue piramidi o le altre inutili opere dei greci, pur se celebrate come famose?" (figure 1 e 2).

Eppure fino a qualche decennio fa l'interesse degli storici e degli archeologi era pressoché monopolizzato dalle opere monumentali, mentre molte testimonianze sotterranee, pur evidenti e note, attendevano di essere recuperate e studiate.

Brevi cenni di archeologia dell'acqua in Italia

L'appresa capacità di trasportare l'acqua, asservendola alle proprie necessità, determinò la trasformazione dei nuclei antropici nomadi in stanziali e successivamente dette impulso alla nascita delle grandi civiltà del passato. Con tecniche diverse, ma identiche finalità, Etruschi, Greci e Romani realiz-

zarono innumerevoli opere idrauliche per individuare e sfruttare le circolazioni idriche sotterranee, captare le sorgenti, trasportare l'acqua in sotterraneo, immagazzinarla in cisterne e serbatoi.

La necessità di regolare la risorsa acqua nasce con l'affermarsi dell'agricoltura come mezzo di sopravvivenza primaria. Certamente già in epoca antichissima i primi agricoltori dovettero porre in atto elementari forme di controllo delle acque, compiendo il primo passo verso lo sviluppo dei millenni successivi.

In Italia, già dalla prima fase del neolitico, troviamo negli insediamenti pugliesi tracce di pozzi e cisterne, ma anche caratteristici fossati circolari o semicircolari, probabili opere di drenaggio o per la captazione.

Le tecniche di canalizzazione delle acque in sotterraneo appaiono strettamente collegate anche alla civiltà etrusca che, a partire dall'VIII secolo a.C., si diffuse nella penisola ed in particolare nell'Italia meridionale, dove gli Etruschi seppero adattarsi alle caratteristiche del territorio, prevalentemente vulcanico e con terreni di bassa consistenza, creando una complessa rete di canali di drenaggio, irrigazione e trasporto delle acque.

I contatti che l'Etruria stabilì con l'Oriente tra VIII e VII secolo a.C., dando origine alla fase "orientalizzante", sono stati in alcuni casi interpretati come possibili vettori della tecnica cunicolare che, dalle zone mesopotamica ed iraniana nelle quali avevano avuto origine i qanat, si era espansa verso l'Etruria meridionale.

Lo scavo dell'emissario del lago di Albano, avvenuto intorno al 390 a.C. ci conferma il ruolo etrusco nel progresso della tecnica idraulica romana, allorché Tito Livio (Storia di Roma, V, 15-21), ricorda che, in tale occasione, i romani si mostrarono estranei al compimento dell'opera, mentre le maestranze etrusche (un secolo dopo l'allontanamento dei Tarquinii) erano ancora ottime conoscitrici della tecnica cunicolare.

Il primo acquedotto romano, l'Appio, nel 319 a.C., è tutto in sotterraneo e preleva l'acqua con pozzi e gallerie drenanti per immetterle in un canale ipogeo che raggiunge Roma sotto il Celio.

Tradizione dunque etrusca, che finì col diventare romana al fondersi delle diverse etnie, dall'incontro delle quali si originò in epoca tarda repubblicana ed imperiale il popolo romano. La gestione della risorsa acqua sarà ritenuta di importanza fondamentale in epoca imperiale, al punto da assegnare al "Soprintendente delle Acque Pubbliche" due littori come scorta d'onore, considerando tale carica molto prossima all'apice della carriera senatoriale.

Brevi cenni di tecnica idraulica nel mondo antico

Come già accennato nel paragrafo precedente, a monte dell'idraulica romana esiste tutto un "corpus" di condotti sotterranei che marca il progresso delle tecniche idrauliche nel mondo antico. In Grecia, nel bacino di Copaide, si conservano i resti di una imponente opera di drenaggio sotterranea che, secondo gli studiosi della zona, risalirebbe alla fine del secondo millennio a.C. Più vicini nel tempo il condotto fatto scavare dal re Ezechia per condurre a Gerusalemme l'acqua della fonte di Siloe, che si colloca a cavallo tra il VII ed il VI secolo a.C. e gli acquedotti di Atene e Samo risalenti al VI secolo a.C.

Per ciò che riguarda la tecnica del costruire in sotterraneo si trovano abbondanti testimonianze sia del metodo di avanzamento in scavo cieco con l'incontro finale tra i due opposti cunicoli, sia dello scavo del condotto a partire dalla base di una serie di pozzi opportunamente scaglionati lungo il previsto percorso.

Questa seconda tecnica è in genere la preferita quando il canale è realizzato a profondità non eccessiva, ma fa eccezione il già citato esautore del bacino di Copaide, abbandonato in fase di esecuzione, per il quale erano già stati approntati pozzi che raggiungevano una profondità di oltre 80 metri.

In linea generale siamo oggi portati a ritenere che la tecnica di scavo in cieco sia stata sviluppata successivamente a quella dei pozzi. In tempi relativamente recenti in Italia ha avuto un certo seguito l'opinione che vede all'origine della tecnica dei pozzi gli analoghi condotti utilizzati in molte regioni aride o semi-aride per attingere le acque delle circolazioni idriche sotterranee, con massimo sviluppo nel territorio dell'antica Persia. Tali condotti, che assumono di-

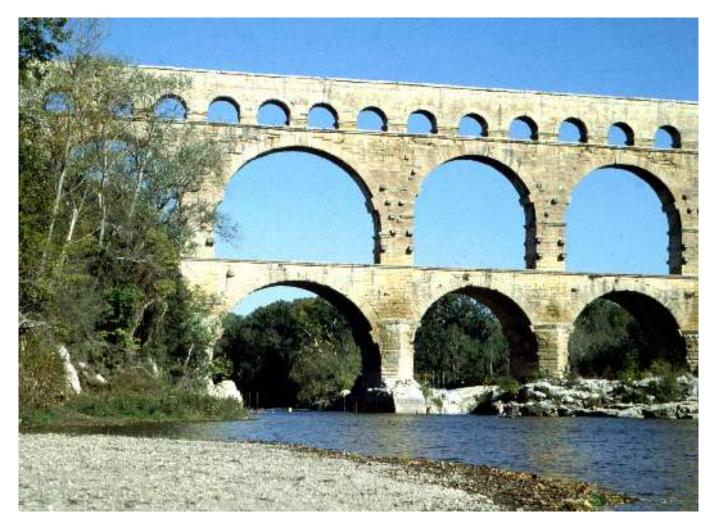


Figura 2: le arcate del Pont du Gard, in Francia, famoso non solo per la sua bellezza, ma anche per le sue dimensioni (275 m di lunghezza per 49 di altezza). Il ponte scavalca la valle del fiume Gard ed era parte integrante dell'acquedotto di Nimes (Foto Carlo Germani).

verse denominazioni locali nelle varie aree geografiche (figura 2), sono generalmente indicati con il termine arabo qanat (o qnat) o anche con il corrispondente vocabolo persiano karez.

Va tuttavia sottolineato come all'apparente analogia delle strutture corrispondano principi progettuali ed esecutivi sostanzialmente diversi.

Il qanat è un condotto sotterraneo che viene progressivamente spinto dal previsto punto di sbocco verso un rilievo attiguo, sino a raggiungere la base di un pozzo (detto pozzo madre del qanat) attraverso il quale si è preventivamente verificata l'esistenza di una falda acquifera; nel corso dello scavo vengono regolarmente intervallati pozzi di collegamento con la superficie, per l'aerazione del condotto e per un più immediato accesso alla prosecuzione dello scavo stesso.

I condotti greci e romani obbediscono a logiche completamente diverse. Da un punto di vista funzionale, essi sono rivolti non all'emungimento delle acque di falda ma al solo trasporto di acque, siano esse sorgive o fluviali.

La tecnica costruttiva prevede lo scavo preventivo dei pozzi e la successiva esecuzione del condotto a partire dal fondo di questi.

Come conseguenza, si ha che il qanat richiede l'impiego di un unico scavatore che risale progressivamente verso il pozzo madre, mentre lo scavo dell'acquedotto può essere affidato a squadre che lavorano in contemporanea sia per la realizzazione dei pozzi che per l'esecuzione del condotto, con evidente risparmio sui tempi di esecuzione.

Gli acquedotti romani

Le imponenti arcate degli acquedotti che caratterizzano la campagna romana sono una delle più note ed ammirate evidenze dell'impegno urbanistico dell'antica Roma, rappresentando peraltro solo una minima parte dell'intera e complessa opera.

Gli acquedotti furono progettati e realizzati come lunghi cunicoli sotterranei, emergenti allo scoperto solo nell'attraversamento di avvallamenti del suolo, mantenuti in posizione elevata per ottenere una pendenza costante e raggiungere con quota elevata le utenze.

Secondo quanto tramandano le fonti, il primo acquedotto (Aqua Appia) fu condotto a Roma nel 312 a.C. a cura dei censori Appio Claudio e M. Flavio Veniores. Il condotto dell'Appio, lungo circa 16 km, era interamente sotterraneo sino alle porte di Roma, anche per ragioni di sicurezza.

Seguirono ad intervalli quasi regolari altri acquedotti, oggetto di una vasta letteratura cui il lettore potrà fare riferimento per dettagliate analisi (vedi, ad es., Lanciani R., I commentari di Frontino

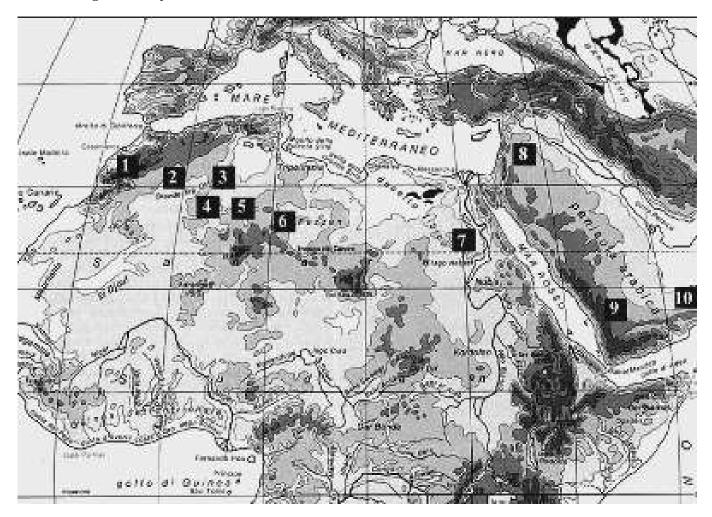


Figura 3: collocazione di alcuni tra i più rilevanti sistemi di Qanat occidentali. Legenda: 1) Marocco: Hauz (Marrakech); 2) Algeria: Tafilalt; 3) Algeria: Gourara; 4) Algeria: Touat; 5) Algeria: Tidikelt; 6) Libia: Fezzan; 7) Egitto: Oasi di Kharga; 8) Siria e Giordania; 9) Yemen; 10) Oman (da Castellani, 2001).

Epoca	Nome	Lunghezza	Speco sotterraneo
312 a.C.	Aqua Appia	16,56 km	16,47 km
272 a.C.	Anio Vetus	64 km	63,7 km
144 a.C.	Aqua Marcia	91,3 km	78,4 km
125 a.C.	Aqua Tepula	17,7 km	7,4 km
33 a.C.	Aqua Julia	22,8 km	16,8 km
19 a.C.	Aqua Virgo	19 km	19 km
2 a.C.	Aqua Alseatina	32,7 km	32,2 km
47 d.C.	Aqua Claudia	66,6 km	52 km
52 d.C.	Anio Novus	86,9 km	73 km

Tabella I: gli acquedotti condotti in Roma sino al I sec. d.C., riportati nel testo di Frontino.

intorno le acque e gli acquedotti, 1881; Ashby T., The Aqueducts of Ancient Rome, 1935; Pace P., Gli acquedotti di Roma, 1983; Panimolle G., Gli acquedotti di Roma antica, 1968, AA.VV., Il trionfo dell'acqua, 1986).

Nella tabella sono elencati i soli acquedotti condotti in Roma sino al I sec. d.C., riportati nel testo di Frontino. Se ne evince l'esistenza di 360 km di speco sotterraneo. Da questi, che possono essere considerati come rappresentativi dell'origine e dello sviluppo della grande tecnica romana, prese avvio la realizzazione di opere analoghe in tutta l'area mediterranea.

Brevi cenni sulle tecniche costruttive

Secondo Frontino l'ingegneria idraulica romana, come quella greca, si suddivide in conduzione sotterranea, galleria in roccia, pozzo e condotte di superficie. Non esiste, dunque, nessuna contrapposizione assoluta tra la tecnica

idraulica greca e quella romana, tra la prima sub terra e la seconda supra terram.

Benché non si presentino quindi sostanziali differenze negli impianti idraulici delle due civiltà antiche, vale la pena sottolineare alcune tendenze preferenziali legate ai singoli periodi storici (ad esempio, il prevalere delle gallerie in ambito greco e il perfezionamento degli acquedotti su arcate e dei sifoni "rovesci" in ambito romano).

In generale greci e romani utilizzarono le stesse strutture architettoniche e gli stessi impianti di conduzione: tutte le componenti essenziali degli acquedotti sono, infatti, rappresentate in entrambe le epoche. Così per le tubazioni sotterranee e superficiali, per le reti di gallerie e canali scavati in profondità o in superficie, per tutti i tipi di costruzioni, per l'impiego di tubi e condutture a pelo libero e per le possibili combinazioni di queste tecniche edilizie.

Un acquedotto è un condotto idrico

artificiale destinato a rifornire di acqua potabile una comunità di persone. L'evidenza storica suggerisce che la realizzazione di un acquedotto avviene generalmente quando una comunità si è già organizzata in struttura urbana. Rintracciare i percorsi sotterranei degli acquedotti significa dunque ripercorrere la storia dello sviluppo degli insediamenti urbani in una determinata regione.

Oltre a Frontino (De Aquaedectu Urbis Romae) lo scrittore che si è maggiormente interessato agli aspetti tecnico - costruttivi degli acquedotti è Vitruvio. Il suo De Architectura, pubblicato fra il 25 ed il 23 a.C. ha valenza di manuale di tecnica edilizia dell'antichità, scritto in un'epoca in cui l'arte di costruire con materiali naturali era peraltro giunta alla perfezione.

Elementi di un acquedotto

A. Opere di conduzione

I problemi costruttivi delle opere di conduzione erano principalmente legati alla natura del terreno: quando le alture si presentavano di natura rocciosa o tufacea era sufficiente scavare il canale rivestendone le pareti ed il fondo con malta impermeabilizzante, quando erano di terra o sabbia era necessario rivestire interamente il canale con calcestruzzo.

B. Raccolta e distribuzione delle acque (cfr. figura 4)

Le opere di presa (incile) Verificata la quantità di acqua disponibile si realizzavano le opere di captazione con presa diretta dal

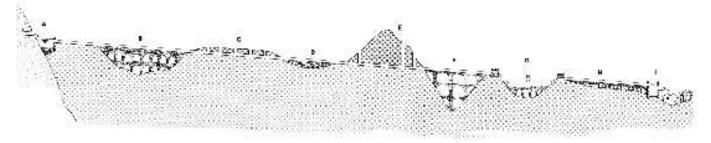


Figura 4: schema di un acquedotto romano. Legenda: A) opera di presa (captazione di una sorgente tramite cunicoli drenanti e bacino di raccolta e sedimentazione); B) canale su viadotto ad arcate sovrapposte; C) canale in tunnel sotterraneo a bassa profondità, dotato di numerosi pozzi; D) canale su terrapieno; E) canale sotterraneo a "grande" profondità, con pochi pozzi alle due estremità; F) viadotto a pile verticali continue; G) sifone rovescio con la conduttura centrale verticale, per attutire eventuali colpi di ariete, disegnata secondo la descrizione di Vitruvio; H) viadotto terminale; I) cisterna di distribuzione (da Castellani V., Dragoni W., 1989).

fiume o dalle sorgenti (le acque captate dal fiume erano meno pure). L'acqua veniva poi convogliata in canali che confluivano in un bacino collettore sfruttato anche per la decantazione, dal quale partiva il canale del vero e proprio acquedotto.

Il canale di deflusso (specus)

Dalle opere di presa aveva inizio il canale di deflusso. Il percorso era tracciato studiando la geomorfologia e le pendenze, prediligendo i pendii meno esposti al sole e le zone più comode per la manutenzione.

Le dimensioni interne del canale erano molto variabili, come anche i tipi di copertura riscontrati sia a volta, che piatta, che a cappuccina.

La pendenza

La pendenza del canale era stabilita in funzione della quota dell'opera di presa e di quella stabilita per il castellum di distribuzione: era minima in corrispondenza dei tratti su arcate per evitare vibrazioni dovute all'eccessiva velocità dell'acqua, più elevata e meno costante nei tratti sotterranei o in galleria.

Lo strumento più affidabile per la misurazione delle pendenze era il chorobate.

La pendenza delle condotte greche e romane variava nei singoli tratti fra lo 0,0025% ed il 10%. La pendenza media calcolata sulla lunghezza complessiva delle tubazioni, oscillava tra lo 0,01-0,015% di Parigi, lo 0,035% di Nîmes o più dello 0,1% in tratti degli acquedotti di Atene e Roma, fino a più punti percentuali, secondo le condizioni geografiche e topografiche della zona.

Figura 5: le arcate di un acquedotto nei dintorni di Roma. (Foto: Carla Galeazzi)

Gli archi e le gallerie

In corrispondenza di avvallamenti il condotto correva su sostruzioni continue o su arcate. Per superare le alture si ricorreva alla realizzazione di gallerie. Ove possibile si preferiva seguire a mezza costa le alture, con condotti sotterranei spesso contraffortati sul lato a valle.

Il castellum aquarum

Il castello di distribuzione veniva costruito lungo il condotto in corrispondenza delle utenze. La velocità dell'acqua veniva rallentata favorendo il deposito delle impurità. Dal castellum partivano tubature in piombo, tarate, periodicamente soggette a verifica per evitare prelievi illegali.

La quota

Altra caratteristica fondamentale in un acquedotto era la quota raggiunta nei castella, da cui dipendevano la pressione dell'acqua in distribuzione e l'ampiezza del bacino di utenza.

Ringraziamenti

I più sentiti ringraziamenti a Vittoria Caloi e Leonardo Lombardi per la revisione dei testi.

Bibliografia

AAVV, 1986, Il trionfo dell'acqua, Ed. Paleani, Roma.

AdamJ.P., 1996, L'arte di costruire presso i romani, Longanesi & C., Milano.

Cairoli Giuliani F., 1990, L'edilizia nell'antichità, La Nuova Italia Scientifica, Roma.

Castellani V., Dragoni W., 1989, Opere idrauliche ipogee nel mondo romano, in: L'Universo, anno LXIX, n.2 marzo-aprile 1989, Istituto Geografico Militare, Firenze.

Castellani V., 1999, Civiltà dell'acqua, Editorial Service System, Roma.

Castellani V., 2001, Acqua, acquedotti e qanat, in: Opera Ipogea n.2 D 2001, Erga Ed., Genova.

Marinucci G., 1988, Tecniche costruttive romane, Gruppo Archeologico Romano, Roma.

Tölle Kastenbein R., 1990, Archeologia dell'acqua, Longanesi & C., Milano.